



## Implementing Utility Scale RE Projects— The Local Experience

**Presentation to Barbados Town Planning Society** 

By

Johann Greaves – Director Operations, Barbados Light & Power Andy Gill – Planning Consultant, Richard Gill Associates Ltd.

**ELECTRICITY...POWERING OUR NATION'S PROGRESS SINCE 1911** 



#### **Presentation Overview**



- Emera/BLPC Strategy toward Renewables
- Utility Scale Wind Project Lamberts
- Planning Challenges with Wind Farms
- Utility Scale Solar PV Project Trents Solar
- Planning Challenges with Utility Scale PV
- Planning Policy for Renewables





# Emera/BLPC's Clean Energy Strategy



- BLPC has been involved in RE from 2000 installation of first solar PV system
- BLPC has developed a clean energy strategy which will
  - See the reduction of fossil fuel over the next four decades
  - Increase use of firm and non-firm renewable energy
  - Transform the transport sector to use electric vehicles
  - Use next generation smart grid technologies to help manage the demand side, to increase renewable energy penetration



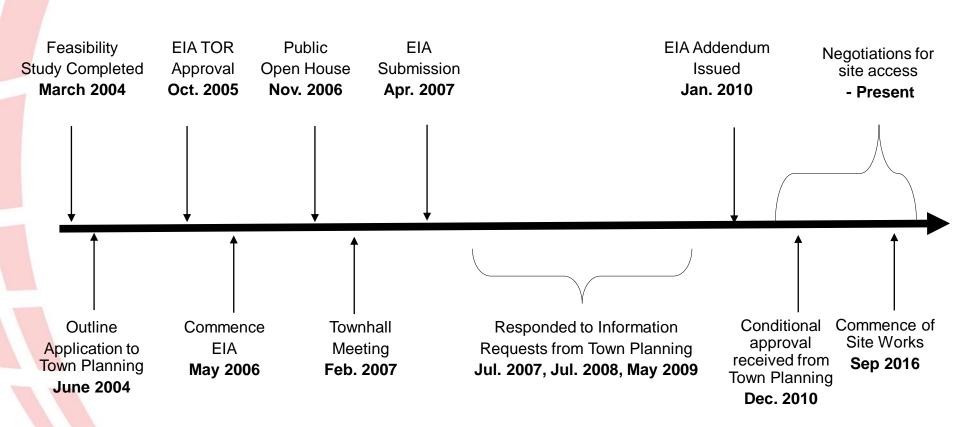
#### **Lamberts Windfarm**







### **Lamberts – Project Overview**




- Lamberts is one of four sites designated by Government in the National Physical Development Plan for wind energy development.
- Construction of a 10MW utility-scale Wind Farm at Lamberts, St. Lucy
  - Proposed location is part of the Lamberts plantation lands.
  - Originally proposal for eleven wind turbines rated at around 850kW each.
  - Site Preparation works to facilitate wind farm(Access roads, fencing around base of each turbine)
- Interconnection of facility to existing St. Lucy Energy Gateway Substation via 24kV overhead line.



### **Lamberts Project Timeline**





**ELECTRICITY...POWERING OUR NATION'S PROGRESS SINCE 1911** 



## Environmental Impact Assessment



- Aesthetics Visual Impact of turbines on landscape
- **Ecological Effects** Focus on impact on birds and bats
- Air Quality Impact on air quality during construction and operation
- **Noise** Impact on noise at surrounding receptors
- **Traffic** Impact on traffic flow during construction
- Groundwater Impact on water resources
- **Electromagnetic Interference** Impact on radio and telecommunications communications and radar
- **Shadow Flicker** Impact of movement of turbine blades between sun causing shadows to be formed.
- Waste Disposal Disposal methods during construction and operation

No significant adverse environmental effects given implementation of recommended mitigation measures.

**ELECTRICITY...Powering Our Nation's Progress Since 1911** 



#### **Current Status**



- Negotiations continuing with land owner to access land.
- Turbines options being reviewed. Original turbine selected no longer available. May result in fewer but larger turbines.
- Pre-construction noise monitoring on-going. Ambient noise being recorded higher than that specified in permission document. Matter raised with Planning agencies.
- Transportation Survey Completed
- Environmental Impact Assessment to be reviewed based on final turbine selected.

**ELECTRICITY...POWERING OUR NATION'S PROGRESS SINCE 1911** 



## Planning Challenges with Wind Farms - Lamberts



- First utility-scale wind farm application (11 turbines) in Barbados.
- Extensive research required by BLPC and Planning Agencies before permission was given (6-year planning process, high cost).
- Residents in surrounding areas of the Lamberts Site had memories of old "Howden" turbine that experienced a number of issues.
- Concerns were repeatedly raised at Public Meeting by residents including a local association. BL&P's consultants addressed these issues.
- Only a limited number of sites in Barbados that satisfy both setbacks and suitable wind regimes.
- Available sites are further restricted due to interference with airport radar and flight paths.





#### 10 MW Solar PV - Trents





**ELECTRICITY...**Powering Our Nation's Progress Since 1911



## **Trents Solar Project Overview**

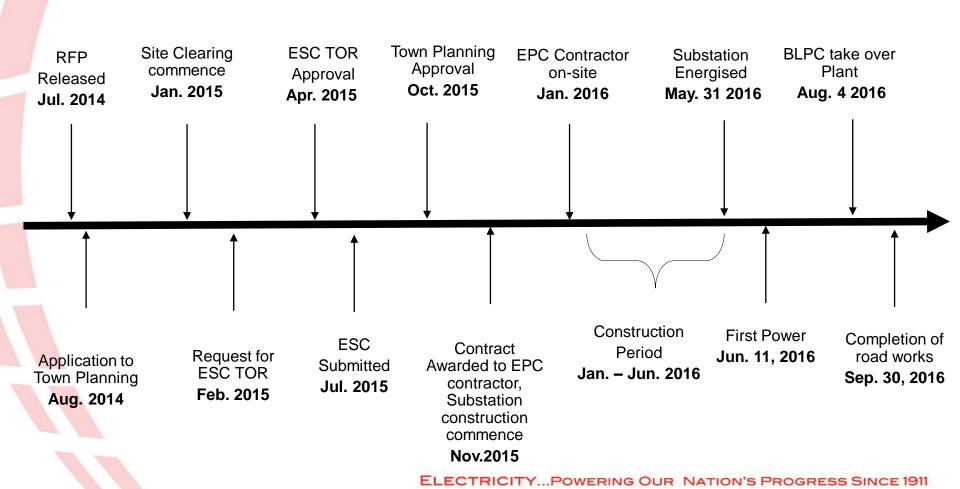


- Site selected was part of a 72 acre site owned by BLPC and previously approved for power generation.
- Construction of a 10MW utility-scale solar photovoltaic farm at our Trents Site (West of the St. Lucy's Parish Church)
  - Site Preparation works to facilitate solar plant (leveling site, access roads, fencing site)
  - Installation of Solar PV panels on 42 acres of land.
- New Substation to facilitate interconnection of Solar Project and other projects planned for St. Lucy.
  - Interconnection of facility to existing grid via underground HV cables.



## **Facts and Figures**




| Facts                     | Figures            |
|---------------------------|--------------------|
| Number of PV panels       | 44,496             |
| Panel Size                | ~ 1.6 x 1 Meter    |
| Size of Site              | 42 Acres           |
| Annual Generation         | 20.2 GWh           |
| Base Load Supported       | 2.2%               |
| Homes Supported by Plant  | 7,700 Average      |
| Fuel Cost Reduction       | BBD\$ 10M Annually |
| CO <sub>2</sub> Reduction | 21,000 Tons        |
| Life Span of Plant        | 25 Years           |
| Project Cost              | BBD\$ 43M          |

RESS SINCE 1911



## Solar PV Project Timeline







# Will there be any Environmental Impacts?



- Environmental Scoping Study completed and submitted as part of Town and Country Planning application
  - Visual Impact
  - Glare & Glint
  - Storm Water Drainage
  - Noise
  - Land Use
  - Security & Safety
  - Construction & End of Life Waste Disposal
- No significant impacts identified. Minimal glare being addressed with installation of vegetation screen on north and western boundaries.





#### TRENTS SOLAR PV FARM

## **OUR JOURNEY**

**ELECTRICITY...POWERING OUR NATION'S PROGRESS SINCE 1911** 



#### **Site Safety**



- Safety was one of major focuses during project.
  - Risk Assessments
  - Appropriate PPE by all on-site
  - Emergency Drills
  - Incident Reporting
- No Injuries reported during construction
- Safety requirements enforced during operation of plant



**ELECTRICITY...POWERING OUR NATION'S PROGRESS SINCE 1911** 



#### **Clearing & Leveling of Site**



**January 26, 2015** 

May 29, 2015







#### **Site Security**



## Site fencing erected to control access to site

- High Voltage on Site



#### **Security Cameras monitor site**



**ELECTRICITY...Powering Our Nation's Progress Since 1911** 



#### **Road Access**



- Perimeter road around site
  - To access site
  - Act as fire break with surrounding lands
- Main Access road on site is artery through site to allow for access to field





**ELECTRICITY...Powering Our Nation's Progress Since 1911** 



#### **Site Drainage**



- Drainage study conducted across site.
- Regrading of site permitted drainage of site to low areas.
- Wells installed in drainage reserve areas.





#### **Structure**



- Category 3 Hurricane Design.
- Over 15,000 piles driven into ground.
- Oriented at 15 degrees to the horizontal in southern direction.
- Lower end 0.5 m off the ground.
   Higher end 1.5 m





**ELECTRICITY...Powering Our Nation's Progress Since 1911** 



#### **Installation of HV Cables**



- Cables between electrical equipment in field are buried.
- Underground Cables between solar field and substation







#### St. Lucy Energy Gateway







**ELECTRICITY...**Powering Our Nation's Progress Since 1911



#### **Time Lapse Video of Construction**



**Time Lapse Video** 



## **May 2015**







#### **June 2016**







### **Vegetation Maintenance**





- Sheep Grazing between solar panels
- Sheep Grazing on Solar farms is fairly common around the world.





**ELECTRICITY...Powering Our Nation's Progress Since 1911** 



# Benefits & Disadvantages of PV from Planning Perspective



#### **Benefits of PV**

- Free and abundant energy source meets National Goals for Green Energy
- Efficiencies are improving, prices dropping, reliable and mature
- Minimal environmental impacts mostly visual, very eco-friendly
- Roof-top systems use no extra land
- Roof-top systems can be up to 16" above roof without requiring planning permission
- Compatible with BWA Zone 1, possible exception of unprotected batteries
- Dual use (sheep farming and power generation) can mitigate removal of agricultural land

#### Disadvantages of PV are minimal

- Ground-mount systems require large areas of land (4 acres per MW)
- Intermittent power (day-time, good weather) = unreliable source



ELECTRICITY...POWERING OUR NATION'S PROGRESS SINCE 1911



## Requirements for Utility Scale PV



- Land Requirements for Ground-mount PV
  - Large contiguous area of relatively flat land
  - Suitable grid connection nearby
  - Suitable soils that allow for affordable foundations
  - Suitable lease or purchase arrangement in place
  - Planning permission for PV-based electricity generation (permanent land use or 20 yr temp use minimum)
- Scoping Study required
- Public Meeting for Scoping Study required
- Generation License (renewable every 10 years)





## **Planning Policy**



#### 2003 Physical Development Plan (PDP)

- Heavily focused on protecting agricultural lands from development
- Wind energy guidance was included and specific sites identified
- Protect existing & potential wind sites from sensitive uses
- Required EIA and Wind Energy Assessments for new sites
- However, PV and other green energies were not included

#### New PDP is currently being worked on

- Renewable energy to be comprehensively addressed
- Renewable energy likely to be promoted across the island to allow greater flexibility
- Consideration of dual uses likely, where RE is combined with Agri. E.g. Wind and Sugar, PV and Sheep





#### **Your Time to Share ......**





## For further information: Johann Greaves

Via e-mail: johann.greaves@blpc.com.bb Via telephone phone: 626-3200/4500

## For further information: Andy Gill

Via e-mail:<u>agill@richardgillassociates.com</u> <u>Via telephone phone:</u> 425-1488

